3.11.90 \(\int \frac {1}{(-2+3 x^2) (-1+3 x^2)^{3/4}} \, dx\) [1090]

Optimal. Leaf size=127 \[ \frac {\tan ^{-1}\left (\frac {\sqrt {\frac {3}{2}} x}{\sqrt [4]{-1+3 x^2}}\right )}{2 \sqrt {6}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {\frac {3}{2}} x}{\sqrt [4]{-1+3 x^2}}\right )}{2 \sqrt {6}}-\frac {\sqrt {\frac {x^2}{\left (1+\sqrt {-1+3 x^2}\right )^2}} \left (1+\sqrt {-1+3 x^2}\right ) F\left (2 \tan ^{-1}\left (\sqrt [4]{-1+3 x^2}\right )|\frac {1}{2}\right )}{2 \sqrt {3} x} \]

[Out]

1/12*arctan(1/2*x*6^(1/2)/(3*x^2-1)^(1/4))*6^(1/2)-1/12*arctanh(1/2*x*6^(1/2)/(3*x^2-1)^(1/4))*6^(1/2)-1/6*(co
s(2*arctan((3*x^2-1)^(1/4)))^2)^(1/2)/cos(2*arctan((3*x^2-1)^(1/4)))*EllipticF(sin(2*arctan((3*x^2-1)^(1/4))),
1/2*2^(1/2))*(1+(3*x^2-1)^(1/2))*(x^2/(1+(3*x^2-1)^(1/2))^2)^(1/2)/x*3^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 127, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {409, 240, 226, 453} \begin {gather*} \frac {\text {ArcTan}\left (\frac {\sqrt {\frac {3}{2}} x}{\sqrt [4]{3 x^2-1}}\right )}{2 \sqrt {6}}-\frac {\sqrt {\frac {x^2}{\left (\sqrt {3 x^2-1}+1\right )^2}} \left (\sqrt {3 x^2-1}+1\right ) F\left (2 \text {ArcTan}\left (\sqrt [4]{3 x^2-1}\right )|\frac {1}{2}\right )}{2 \sqrt {3} x}-\frac {\tanh ^{-1}\left (\frac {\sqrt {\frac {3}{2}} x}{\sqrt [4]{3 x^2-1}}\right )}{2 \sqrt {6}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((-2 + 3*x^2)*(-1 + 3*x^2)^(3/4)),x]

[Out]

ArcTan[(Sqrt[3/2]*x)/(-1 + 3*x^2)^(1/4)]/(2*Sqrt[6]) - ArcTanh[(Sqrt[3/2]*x)/(-1 + 3*x^2)^(1/4)]/(2*Sqrt[6]) -
 (Sqrt[x^2/(1 + Sqrt[-1 + 3*x^2])^2]*(1 + Sqrt[-1 + 3*x^2])*EllipticF[2*ArcTan[(-1 + 3*x^2)^(1/4)], 1/2])/(2*S
qrt[3]*x)

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 240

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Dist[2*(Sqrt[(-b)*(x^2/a)]/(b*x)), Subst[Int[1/Sqrt[1 - x^4/a],
 x], x, (a + b*x^2)^(1/4)], x] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 409

Int[1/(((a_) + (b_.)*(x_)^2)^(3/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Dist[1/c, Int[1/(a + b*x^2)^(3/4), x],
 x] - Dist[d/c, Int[x^2/((a + b*x^2)^(3/4)*(c + d*x^2)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d,
0]

Rule 453

Int[(x_)^2/(((a_) + (b_.)*(x_)^2)^(3/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Simp[(-b/(Sqrt[2]*a*d*Rt[-b^2/a,
4]^3))*ArcTan[(Rt[-b^2/a, 4]*x)/(Sqrt[2]*(a + b*x^2)^(1/4))], x] + Simp[(b/(Sqrt[2]*a*d*Rt[-b^2/a, 4]^3))*ArcT
anh[(Rt[-b^2/a, 4]*x)/(Sqrt[2]*(a + b*x^2)^(1/4))], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d, 0] && Neg
Q[b^2/a]

Rubi steps

\begin {align*} \int \frac {1}{\left (-2+3 x^2\right ) \left (-1+3 x^2\right )^{3/4}} \, dx &=-\left (\frac {1}{2} \int \frac {1}{\left (-1+3 x^2\right )^{3/4}} \, dx\right )+\frac {3}{2} \int \frac {x^2}{\left (-2+3 x^2\right ) \left (-1+3 x^2\right )^{3/4}} \, dx\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt {\frac {3}{2}} x}{\sqrt [4]{-1+3 x^2}}\right )}{2 \sqrt {6}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {\frac {3}{2}} x}{\sqrt [4]{-1+3 x^2}}\right )}{2 \sqrt {6}}-\frac {\sqrt {x^2} \text {Subst}\left (\int \frac {1}{\sqrt {1+x^4}} \, dx,x,\sqrt [4]{-1+3 x^2}\right )}{\sqrt {3} x}\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt {\frac {3}{2}} x}{\sqrt [4]{-1+3 x^2}}\right )}{2 \sqrt {6}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {\frac {3}{2}} x}{\sqrt [4]{-1+3 x^2}}\right )}{2 \sqrt {6}}-\frac {\sqrt {\frac {x^2}{\left (1+\sqrt {-1+3 x^2}\right )^2}} \left (1+\sqrt {-1+3 x^2}\right ) F\left (2 \tan ^{-1}\left (\sqrt [4]{-1+3 x^2}\right )|\frac {1}{2}\right )}{2 \sqrt {3} x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 6.12, size = 68, normalized size = 0.54 \begin {gather*} \frac {\sqrt [4]{-1} \sqrt {x^2} \left (\Pi \left (-i;\left .\sin ^{-1}\left ((-1)^{3/4} \sqrt [4]{-1+3 x^2}\right )\right |-1\right )+\Pi \left (i;\left .\sin ^{-1}\left ((-1)^{3/4} \sqrt [4]{-1+3 x^2}\right )\right |-1\right )\right )}{\sqrt {3} x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((-2 + 3*x^2)*(-1 + 3*x^2)^(3/4)),x]

[Out]

((-1)^(1/4)*Sqrt[x^2]*(EllipticPi[-I, ArcSin[(-1)^(3/4)*(-1 + 3*x^2)^(1/4)], -1] + EllipticPi[I, ArcSin[(-1)^(
3/4)*(-1 + 3*x^2)^(1/4)], -1]))/(Sqrt[3]*x)

________________________________________________________________________________________

Maple [F]
time = 0.05, size = 0, normalized size = 0.00 \[\int \frac {1}{\left (3 x^{2}-2\right ) \left (3 x^{2}-1\right )^{\frac {3}{4}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(3*x^2-2)/(3*x^2-1)^(3/4),x)

[Out]

int(1/(3*x^2-2)/(3*x^2-1)^(3/4),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3*x^2-2)/(3*x^2-1)^(3/4),x, algorithm="maxima")

[Out]

integrate(1/((3*x^2 - 1)^(3/4)*(3*x^2 - 2)), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3*x^2-2)/(3*x^2-1)^(3/4),x, algorithm="fricas")

[Out]

integral((3*x^2 - 1)^(1/4)/(9*x^4 - 9*x^2 + 2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (3 x^{2} - 2\right ) \left (3 x^{2} - 1\right )^{\frac {3}{4}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3*x**2-2)/(3*x**2-1)**(3/4),x)

[Out]

Integral(1/((3*x**2 - 2)*(3*x**2 - 1)**(3/4)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3*x^2-2)/(3*x^2-1)^(3/4),x, algorithm="giac")

[Out]

integrate(1/((3*x^2 - 1)^(3/4)*(3*x^2 - 2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\left (3\,x^2-1\right )}^{3/4}\,\left (3\,x^2-2\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((3*x^2 - 1)^(3/4)*(3*x^2 - 2)),x)

[Out]

int(1/((3*x^2 - 1)^(3/4)*(3*x^2 - 2)), x)

________________________________________________________________________________________